Ground state in the limit h17 >> 1:

This limit is much more interesting. First

 $H = - k \sum_{\alpha} \prod_{\alpha} Z \quad \text{with} \quad \prod_{\alpha} x = 1.$

The Gousa law constraint commutes with H

 $\Rightarrow H = -k\sum_{a} T Z -\sum_{b} T \times i.e. the$ constraint can be implemented overgetically

if one is interested only in the ground state and low lying excitations. One can

even set N=1. Therefore we consider

H = - \STZ - \STX. This is

Kitaer's toric code model. Hs

Ground state on a plane: To find the ground state, let's first work in the X-basis. Any configuration that minimizes the Hs term corresponds to a closed doop config. where red line indicates X=-1 on the corresponding link. Otherwise X=+1. Acting with a single term in Hp e.g. TIZ on a specific site severates another Closed doop config (this is because its and the commune) It is natural to guess that a stound stake is a superposition of such close loop contigs. Interest, the only way to make it work is to superpose closed loop configs. with equal weight: 19.s.> = \(\sum_{0} \) One way to write this explainty is: Chara a reference state 140> = TT 1->, is all spins pointing along +X-direction. Then,

$$\frac{\left[1g.s.\right]}{\left[1g.s.\right]} = \frac{\pi}{\pi} \left[1 + \frac{\pi}{2} \frac{\pi}{2} \right] \left[1g.s.\right]}$$
One can also work in the z-bars. The carriage

that minimize Hp box like:

Where red links correspond to Z=-1. Again, they

are closed loop configs, but now on the dual

dattice. The grs. in this basis can be

written as:

T [1+ TT X] 146> Where

1φ'7 = T/17 ; i-e. all-up contig.

Ground states on a torna:
As important property of the wave-for of the form
II (1+ II 5) 16% or II (1+ II X) 16%
Currenous closed loop contigs, that have dentices
parity of the winding number along home continue
- tible eyeles on a torus:
+ + +
Therefore one can construct 4 orthogonal
around states on a torus, correspondent
different parity of the winding along x, y direction
ΙΨοο> = + + + + + + + + + + + + + + + + + +
$ \psi_{10}\rangle =$

1401> = Large 13 small grage transformations: If one were to instead work with a snage theory i.e. H= HP with the Gours law constraint TIX=1 imposed on the Hilbert space. then the states related by guage transformation are identical. The ground states on torus are ofwarse identical to what we found above. The different ground states have the same Cie. Zero) flux through each plaquette Cin the Z-basis), but cannot be related to each Other by a local guage transformation. e.g. there is no way to go from a

config. such as: by a local (" small ") gauge transformation. Such transformations that relate these two configs. are called blank guage transformations? Excitations above the ground state: There are two pinds of excitations in the toric code: electric charge (violation of Hg) and magnetic flux (violation of Hp). The electric charge e sits on a rortex and magnetic fews m " ~ ~ plaquatte. e in x busis: Thus the e-excilations are created by an operator TZ along a line which feirs $X \rightarrow -X$ along the line and creates e-changes at the end-points of the line.

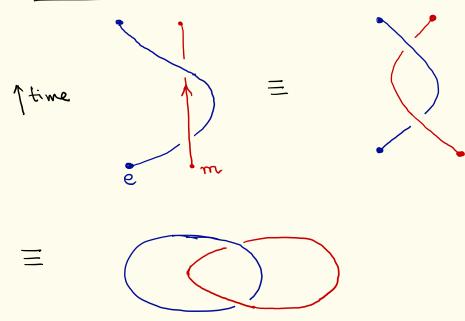
m in Z-basis: Thus the m excitations me created by an Operator TX along + a live on the dual-lattice, and it creaters two m-excitations, located at the end plaquetter of the line. Self-Statistica of e and m excitations; As discussed above, an e excitation located at location i can be mored to i' by an Operator of the form ITZI where the line I goes from it to ir. Since all Z Operators commute with each other, exchanging two e excitations does not yield any phase / sign =) e exciletions are self-bosous. Similarly m existations are morel around by operator of the form TIX and by same reasoning. they are also self-bosons.

Mutual stahatica between e and m particles: Courider an intial state (e, m) where
e m particles are brolised
e at certain positions. One
now drags the e particle
"" m particle and state (e, m) where the around the M particle and brings it back to its original location (m particles position is unchanged during this process). The new wave-for is TZ, 1e, m> where TTZ acts along two path followed by the e-panticle By Stakes thm. this is same as: TT (TT Z) 1e, m> where the product is taken over all plaquettes inside the loop. Since there is a single in particle inside the doop, one and only one plaquatte satisfies TZ 1e, m> = -le, m> while for all others.

丁乙 1e,m> = + 1e,m> >

Therefore, the e and the m particles have a mutal statistica of -1. Ove needs to be a bit careful with the above argument. To be precise, one should compare the Berry phase for a process when e-particle goes around the same path as above, but without any m- particle inside the loop. The relative sign of these two processes is the Berry phase corresponding to braiding. However, in this specific problem, if there was no m-particle inside the loop, then $\Pi(\Pi Z)|e,m\rangle = + |e,m\rangle$ by the Same argument as above. Thus, the relative Berry phase - and hance the braiding statistics is indeed -1.

Space-time picture of braiding:



Thus, braiding corresponds to interlinked trajectories in space-time.

Self-Statistica of the bound state of e+m: To determine tus, we need to exchange a bound state of em with another bound state of ew: Topologically this is some as Checause both e and m are self-bosons =) the exchange of two em bound states yields the same sign as taking one e particle around another in particle (Ebraiding). ⇒ One picks up a sign of -1 under exchange
⇒ em bound state is a fermion!